Несущая способность грунта и способы ее увеличения. Грунты и их несущая способность

От чего зависит несущая способность?

Для определения несущей способности грунта специалисты проводят геологические изыскания. На территории строительной площадки бурят несколько скважин, берут из них пробу через равные расстояния, проводят лабораторные исследования и оформляют отчет.

На несущую способность влияет несколько факторов:

  • Вид грунта;
  • Толщина слоя;
  • Глубина залегания;
  • Характеристики предыдущего слоя;
  • Уровень грунтовых вод (УГВ);
  • Глубина промерзания почвы;
  • Плотность.

При строительстве самый важный показатель — УГВ, от него зависит влажность грунтов.

В сухом и насыщенном влагой состоянии одни и те же породы имеют разные характеристики, отличающиеся в несколько раз.

Foto2
Любые грунты, соприкасающиеся с водой, считаются насыщенными влагой.

Это увеличивает их текучесть и снижает несущую способность.

Исключением являются средние и крупные пески. Их свойства не изменяются из-за насыщения водой.

Плотность — это показатель пористости.

Грунт состоит из твердых частиц, между которыми находятся полые пространства, заполненные воздухом или водой. При превышении максимальной возможной нагрузки происходит деформация (усадка), способная полностью разрушить здание.

Плотные породы с минимальным количеством пустот считаются наиболее прочными. Усадка таких грунтов минимальна.

Залегание

При проектировании здания очень важно исследовать толщу грунтов ниже предполагаемой подошвы фундамента. Близко к поверхности залегают непрочные породы, способные воспринимать нагрузку лишь от небольшого здания. Чем глубже залегает порода, тем она старше, плотнее, толще и надежнее.

В зависимости от залегания и типа грунтов будет разрабатываться план установки фундамента в соответствии с правилами:

  • Не допускается укладка фундамента вблизи границы разных пород;
  • Желательно установить фундамент выше УГВ, если это невозможно — принимаются меры по гидроизоляции конструкций;
  • Идеален для установки фундамента горизонтальный слой.

Несущая способность основания будет снижена в местах смены пород, вблизи УГВ, на склонах.

Foto3

Рис. 1 Пример инженерно-геологического разреза

На чертеже разной штриховкой обозначены породы, указаны высоты устий скважин, начерчена линия УГВ.

Типы грунтов

Существует несколько типов пород, обладающих особыми характеристиками:

  • Скальные, обладающие большой плотностью и несущей способностью;
  • Крупнообломочные. Состоят из отдельных крупных частиц;
  • Песчаные. Непластичные грунты, способные выдерживать большую нагрузку;
  • Глинистые. Связные грунты, легко впитывают влагу, при промерзании пучинятся.

Скальные

Foto4
Скальные породы образуются в результате извержения вулканов и последующего застывания магмы в толще земли.

Благодаря этому формируется порода с малой пористостью и жесткими связями между частицами.

Характеризуется большой прочностью, устойчивостью к отрицательным температурам, не впитывает воду, не пучинятся.

При отсутствии трещин в породе не вымывается и очень медленно разрушается с течением времени.

Скальные породы идеальны в качестве основания для любого объекта. Но они очень редко применяются для строительства, ведь встречаются преимущественно на большой глубине или в труднодоступных участках.

Крупнообломочные

Крупнообломочные грунты — это несвязанные породы, представляющие собой толщу камней (обломков скальных пород), большинство из которых крупнее 2 мм. Слежавшиеся валуны и обломки, не подверженные вымыванию — это хорошее основание.

Различают несколько видов крупнообломочных пород:

  • Гравий. Большая часть обломков имеет размер 2–40 мм. Различают гравий (обломки округлой формы) и дресву (обломки угловатой формы);
  • Галька (округлые части) и щебень (угловатые части). Не менее 50% массы грунта представлено обломками от 40 до 100 мм;
  • Валуны. Размер каждого обломка превышает 100 мм.

Песчаные

В ненасыщенном водой состоянии песок сыпучий, но слежавшийся песчаник — это надежное основание, не изменяющее своих свойств при насыщении влагой. Песчаные породы не пучинятся, хорошо пропускают воду, не задерживая ее вблизи конструкций.

Существует несколько видов песчаников:

  • Пылеватый. Размер фракций 0,005–0,050 мм;
  • Мелкий. Размер песчинок варьируется от 0,050 до 1,0 мм;
  • Крупный. Зерна размером до 2 мм.

Самые надежные основания — это слежавшиеся крупнообломочные породы и крупный песок.

Глинистые

Порода, состоящая из очень маленьких связанных частиц размером до 0,005 мм, называется глинистой. Выветренные мельчайшие частички пород чешуйчатой формы образуют массу грунта, способную быстро впитывать воду. В результате этого порода становится пластичной.

Глина с трудом теряет влагу, при наступлении холодов вода внутри нее замерзает, увеличивается в объеме и глина выпучивается. Этот процесс способен всего за одну зиму разрушать фундамент.

Другие

Foto5
Существует несколько видов грунтов, практически непригодных для строительства:

  • Плывуны. Мелкие частицы песка с примесью глины, очень подвижны, имеют малую несущую способность;
  • Суглинки. В составе присутствует 10–30% глинистых частиц;
  • Супеси. Глина составляет 3–10% от общей массы.

При необходимости обустройства фундамента на вышеперечисленных грунтах необходимо учесть глубину промерзания почвы и УГВ в холодный период. Если уровень воды устанавливается ниже 2 м от глубины промерзания, то установить фундамент допускается близко к поверхности (минимум 0,5м).

Повышение несущей способности

На площадках с недостаточной несущей прочностью основания необходимо провести работы по повышению несущей способности грунта.

Есть два основных метода:

  • Уплотнение;
  • Химические добавки.

В первом случае для достижения большей плотности в грунт вбивают сваи небольшого размера, сокращая количество пустот в породе.

Во втором случае в толщу земли вводят различные химические добавки, сцепляющие между собой отдельные части грунтов.

Еще один способ улучшить характеристики основания — это устройство песчаной подушки под фундамент. После уплотнения она сможет воспринимать и равномерно передавать нагрузку от здания на залегающие ниже породы. Песок не задерживает влагу, не пучинится и является хорошим основанием для строительства дома.

Еще один способ улучшить характеристики основания — это понижение УГВ.

Таблица средних значений

Средняя несущая способность грунтов — это основной показатель расчетов. После выемки образцов породы из скважин проводится определение их вида для дальнейшей работы.

Классификация грунтов приведена в таблицах СНИП 1–3 ГОСТ 25100.2011. После определения типа грунта в каждом из залегающих слоев необходимо определить предельное сопротивление грунта сжатию.

Подробная информация содержится в ГОСТ 25100.2011 «Грунты. Классификация», таблица Б.1.

Foto6

Рис. 2 Сопротивление сжатию

Основа расчета — расчетное сопротивление осевому сжатию. С подробным методом расчета с учетом всех нюансов можно ознакомиться в СП 22.13330.2016 «Основания зданий и сооружений». Здесь же можно найти значение всех коэффициентов, необходимых для максимально точного расчета.

Технология монтажа фундамента

Фундаменты, которые можно отнести к монолитно-бетонным основаниям, существует много. Отличаются они спецификациями, используемыми компонентами и т.д. Среди основных видов особенно востребованы:

Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент
Как определить несущую способность грунта под фундамент

Столбчатый фундамент — Устройство фундамента этого варианта основания подразумевает конструкцию из отдельных столбов, связанных между собой ригелями из бетона и заливающихся по краям будущего сооружения. В результате получается отличное основание для небольших построек и малоэтажного строительства из дерева и кирпича. Рабочий процесс в данном случае не требует использования тяжелой и сложной строительной техники;

Ленточный фундамент — основание по своей структуре является полосой из железобетона, углубленной ниже уровня промерзания грунта. Основные параметры устройства такого фундамента, его ширина, тип используемого бетона, структура и высота определяются на стадии проектирования, исходя из веса будущего здания, его структуры и количества этажей. Как правило, такие основания выбираются для возведения каменных частных строений, имеющих в цокольном этаже подвалы или гаражи;

Железобетонная монолитная плита — выбирается в основном на сложных грунтах, на глинистой, торфяной почве или с большой глубиной промерзания. Основное преимущество устройства такого фундамента в том, что плита является сплошным основанием, способным выдерживать большие нагрузки и сохранять целостность строения;

Свайный фундамент — удачно используется на склонах, промерзших, насыпных, слабых грунтах

В данном случае особе внимание необходимо уделять выбору опор и монолитного ростверка;

Свайно-плитное основание – это уникальное изобретение в строительной сфере, используемое в основном для возведения многоэтажных сооружений. Состоит из нескольких важных элементов – ростверков, железобетонных свай, характеризующихся отличной устойчивостью и повышенной прочностью.

Работы по устройству монолитных оснований предполагают применение специализированной строительной техники, так как требуется выемка больших объемов грунта. Помимо этого, армирование осуществляется в несколько слоев по всей площади основания строения. В данном случае потребуется много стальной арматуры, ее необходимо будет предварительно сваривать и обвязывать по специальной технологии.

Читайте также:  Калькулятор газобетонных блоков (газобетона). Онлайн расчет стен дома из газобетонных блоков

Определение типа грунтов

Для выполнения расчетов и построения геологического разреза необходимо определить типы грунтов. Сначала проводятся полевые геологические работы, в ходе которых на участке бурят несколько скважин.

В процессе бурения через равнее промежутки геологи изымают из толщи земли образцы породы, укладывают их в специальные контейнеры и подписывают. Весь изъятый материал ведут в лабораторию для дальнейшего исследования.

Определить состав пород и их характеристики самостоятельно невозможно. Для этого потребуется специальное оборудование и знания. Без помощи профессионалов можно только примерно определить тип породы с помощью простого метода. Из насыщенного водой грунта пробуют скатать «колбаску».

От полученного результата зависит пластичность:

  • Длинный (до полуметра) жгут — высокая пластичность, грунт связный, частиц не видно. Это характерно для глинистых пород;
  • Жгут получается коротким, образуются трещины, он рвется — пластичность средняя, грунт связный, в составе в основном присутствуют глинистые частицы, содержание песка от 10 до 30%. Это характерно для суглинков.
  • В насыщенном водой состоянии жгут скатать невозможно — грунт несвязанный, состоят из заметных глазу частиц. Характерно для песка.

Foto8

Рис. 3 Схема состава различных пород

Точно определить тип породы и его характеристики возможно только в лабораторных условиях.

Расчет

Расчет несущей способности — это основная цель геологических изысканий. Выполнять его можно только после определения типа пород внутри скважин и получения чертежей геологических разрезов на территории строительной площадки.

Чертеж поможет определить положение слоев пород в толще земли и даст представление о возможности строительства на площадке.

Несущая способность (R) определяется по формуле согласно алгоритму:

  1. Значение R0 (сопротивление осевому сжатию) определяется с помощью таблицы и напрямую зависит от типа грунта;
  2. Рассчитывается глубина промерзания. Это значение индивидуально для каждого региона. Будет зависеть от типа пород в верхних слоях;
  3. Выбирается оптимальная глубина заложения в толще одного из прочных слоев непучинистого грунта, ниже глубины промерзания;
  4. Выполняется расчет по формулам: R=R0*[1+k1*(b-100)/100]*(d+200)/2*200 — при принятой глубине заложения до 2 м и R=R0*[1+k1*(b-100)/100]+k2*g*(d-200) — когда глубина заложения превышает 2 м.

Данные для расчета:

  • k1 — коэффициент берется из таблицы в зависимости от вида породы. 0,125 для устойчивых крупнообломочных или песчаных и 0,5 для глин, супеси и суглинков;
  • k2 — применяется для расчетов несущей способности устойчивых пород (слежавшиеся крупнообломочные или песчаные породы);
  • g — необходим для нахождения удельного веса грунта от подошвы слоя и до нижней части фундамента или следующего слоя;
  • b — ширина, опирающейся на основание части фундамента;
  • d — глубина заложения.

После нахождения фактической несущей способности ее сравнивают с требуемой. Если вторая будет больше первой, то придется менять конструкцию будущего дома (увеличивать площадь опирания фундамента на основание или глубину заложения, менять вид фундамента, выбирать в качестве основания другой, более прочный слой).

Калькулятор для расчета фундаментов

Процесс расчета несущей способности основания — это кропотливый процесс, требующий обширных знаний в области строительства и геологии. На помощь инженерам приходит специальные калькуляторы.

При использовании калькулятора необходимо самостоятельно выбирать тип фундамента, вид почвы и глубину промерзания.

Для правильного определения всех параметров необходимы знания геологии. Доверять анализ основания необходимо специалистам, ведь в строительстве есть множество нюансов, которые не может учесть компьютерная программа.

Для самостоятельного использования отлично подойдут программы для расчета объема ленточного фундамента. Они не учитывают вид почвы и ее несущую способность. Для расчета необходимо ввести все параметры фундамента, и она посчитает объем бетона.

Действующие проектировщики создали простую программу, рассчитывающую базы колонн в зависимости от типа пород основания и веса здания. Она очень специфична и подойдет далеко не каждому, но профессионалам может помочь в расчетах.

4. Песчаные и глинистые грунты

Строительство в основном ведется на песчаных и глинистых грунтах. Скальные породы вообще не требуют фундамента, но они и непригодны для земледелия.

Мы подробнее рассмотрим наиболее распространенные типы грунтов, на которых  обычно ведется строительство домов.

Песчаные грунты подразделяются на несколько категорий, в зависимости от размера составляющих их частиц:

  1. Гравелистый песок – с песчинками от 0,25 до 5 мм
  2. Крупный песок – с частицами от 0,25 до 2 мм
  3. Средний песок – 0,1 – 1 мм
  4. Мелкий, пылевидный песок – с частицами менее  0,1 мм

Песчаный грунт
Песчаный грунт

В свою очередь глинистые грунты подразделяются на:

  1. Супеси – содержащие до 10% глинистых частиц, хорошо крошатся.
  2. Суглинки – с содержанием глинистых частиц от 10 до 30%. Имеют высокую пластичность и хорошее сцепление. Крошатся при высыхании.
  3. Глины – с наибольшим содержанием   мелкодисперсных частиц. Высокопластичны, и как раз являются материалом для работы скульпторов, так как не разрушаются при затвердевании. В то же время достаточно плотны при высыхании.

Пласты глинистого грунта в разрезе
Пласты глинистого грунта в разрезе

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Prev1of1Next

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Prev1of1Next

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Prev1of1Next

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

К содержанию ↑

Основные этапы расчета

Карта глубины промерзания грунта

При проектировании подразумевается, что нагрузка от веса строения распределяется равномерно по площади опоры. Во влажных суглинистых и глинистых почвах жидкость замерзает быстро, грунт вспучивается. Такая особенность этих типов негативно сказывается на несущей способности.





Аналогично действует высокая отметка почвенных вод, если глубина замерзания находится значительно ниже. Неравномерность такого процесса ведет к перекосу фундамента и появлению трещин, в результате дом требует ремонта уже через 2 – 3 года.

Расчет ленточного фундамента предполагает проведение этапов:

  • нахождение массы строения путем сбора полезных и вредных нагрузок на конструктивные элементы дома;
  • выбор размеров опоры;
  • корректировка габаритов после окончательного расчета и проверки параметров.

Ошибки проектирования заключаются в том, что глубина примыкающего основания делается больше, чем подошва существующей опоры строения. Прочность фундамента страдает, если он делается на мелкой глубине (50 см) от уровня пола из газобетона, что часто встречается в гараже или подобных строениях. Нельзя допускать, чтобы на основание дома перераспределялись усилия, которые больше, чем несущая характеристика опорной части.

Читайте также:  Тенелюбивый сад: неприхотливые теневыносливые цветы, деревья, кустарники и овощи. Теневыносливые овощи для огорода

Определение веса конструкций дома

Нагрузка стен и перекрытий на фундамент

Для начала определяется вид грунта и высота стояния почвенных вод для региона строительства. Учитываются материалы, которые применяются для конструкции каркаса здания, кровли, наружной и внутренней отделки. Планировка строения, его этажность и вид крыши берется из архитектурных и строительных чертежей.

Читайте также:  Как подключить бетономешалку напрямую без кнопки?

Приблизительная масса дома складывается из постоянной и временной нагрузки. К постоянной относится собственный вес стен, кровли, перекрытий. Учитывается давление земли и почвенных вод на боковые стенки основания.

Временная нагрузка бывает:

  • длительная;
  • кратковременная;
  • особый вид.

К длительному давлению относится усилие, передаваемое от оборудования, воздействие веса материалов, хранящихся на складе, мебели. Кратковременное усилие возникает при нахождении людей, нагрузка включает вес подъемных механизмов в производственных цехах, действие снега и ветра на крышу.

Определение размеров фундамента

Площадь основания определяется так, чтобы в процессе эксплуатации не наблюдалась осадка грунта. Нагрузка на почву уменьшается, если квадратура и периметр подошвы увеличивается. Для ленточного типа делают больше ширину по всей протяженности, а для столбчатого повышают число опор, увеличивая их габариты (до 500 мм по ширине и длине).

Размер фундамента принимается стандартный (500 мм) для двухэтажных или одноэтажных дачных строений, т.к. нагрузка от здания небольшая и грунт не осаживается со временем. Специалисты рекомендуют столбчатые опоры без существенного увеличения горизонтальных размеров. Если требуется увеличить несущую способность, расширяется нижняя часть опоры и столб приобретает вид перевернутого стакана.

В остальных случаях габариты основания зависят от толщины стен дома и глубины замерзания почвы в зимний период. Под тяжелое здание из кирпичных стен (500 мм) и железобетонного перекрытия делают ленточный монолитный фундамент с армированием или применяют сборные блоки. В строении с подвалом также делается ленточный тип, но основание заглубляется ниже подполья. Толщина ленты делается аналогично размеру стены.

Корректировка размеров фундамента

Исправление и подгонка размеров делается для выбора наиболее выгодного варианта, чтобы правильно рассчитать бетон на фундамент по выбранным габаритам основания. Если полученная несущая способность превышает расчетную нагрузку от строения на 15 – 20%, в целях экономии габариты опоры можно уменьшить.

Откорректированные размеры по ширине и длине проверяются новым расчетом. Учитывается обстоятельство, что при сборе нагрузок следует брать изменившуюся кубатуру фундамента и его уменьшенный вес.

Окончательный подсчет ведется по формуле Н > к · Р / (d · R), где:

  • Н — несущая способность, зависит от размеров основания;
  • к — коэффициент расчета надежности, постоянно равен 1,2;
  • Р — нагрузка дома, посчитанная сбором усилий;
  • d — табличный коэффициент, зависит от вида почвы и типа строения;
  • R — сопротивление грунта, принимается по таблице.

Формула Терцаги

Формула Терцаги описывает закономерность уплотнения грунтов и их компрессионное сжатие. Для исследования грунтов редко выбирают метод трехосного сжатия ввиду его сложности, метод одноосного сжатия можно применять лишь к узкому кругу грунтов. Именно поэтому Терцаги рассматривает одноосное сжатие в жесткой таре, где стенки не дают образцу деформироваться.

По мере уплотнения, то есть сокращения объема полостей, давление возрастает. В результате становится понятно, то сумма деформаций образца составляется из пластической и остаточной деформации. (ξ1= ξp+ ξв)

Foto9

Рис. 4 График нагружения грунта

При выполнении повторного нагружения основанию передаются только упругие деформации.

Морозное пучение грунтов и его влияние на фундамент

Морозное пучение грунтов и его влияние на фундамент
Пучение грунтов — явление сложное и порой приводит к непредсказуемым последствиям в строительстве. Пренебрежение этим явлением приводит к тому, что здания (особенно легкие) поднимаются вместе с фундаментами при замерзании грунтов и опускаются во время их таяния. Неравномерность этих процессов часто приводит здание в аварийное состояние и даже вызывает полное его разрушение.
Из элементарной физики нам известно, что вода при замерзании значительно увеличивается в объеме, разрывая сосуды и трубопроводы. Это же явление происходит и с грунтом. Присутствующая в грунте влага увеличивается в объеме, в результате чего происходит поднятие грунта. И чем больше влаги присутствует в грунте, тем сильнее он увеличивается в объеме при замерзании. В пористых грунтах это явление менее заметно, так как при замерзании грунт расширяется в сторону пор, заполняя пустоты. И чем более пористый грунт, тем меньше вероятность его пучения.
Кроме того, промерзание грунта происходит постепенно и начинается этот процесс сверху, проникая все глубже и глубже. Замерзший грунт начинает вытеснять присутствующую в нем влагу, которая через поры уходит в нижние слои грунта. В пористых грунтах влага беспрепятственно проходит сквозь поры и пучение грунта не происходит. Глина же, как известно, плохо пропускает влагу, которая не уходит вниз, вызывая тем самым подъем замерзшего грунта.
Силы, действующие на фундамент при морозном пучении грунта, бывают значительными, и не считаться с этим явлением нельзя. Силы морозного пучения разделяют на два вида: вертикальные и касательные. При вертикальных силах грунт поднимает фундамент снизу, упираясь в его подошву или другие части.Поэтому большую ошибку допускают те, кто, соблазнившись удешевлением строительства, отказался от заглубления фундамента ниже расчетной точки промерзания. В случае касательных сил грунт примерзает к боковым стенкам фундамента, поднимая их за счет сил бокового трения, образовавшихся при смерзании. Примерзнув к стенкам фундамента, вспучивающийся грунт тоже старается поднимать фундамент, расслаивания его на части. Нужно отметить, что эти силы бывают очень большими и достигают 5 — 7 т на квадратный метр боковой поверхности фундамента. Именно по причине морозного пучения грунта облегченный вариант фундаментов, распространенный во многих странах Запада, для наших условий не подходит. Здесь нужно учитывать, что средняя полоса России — это не Италия или Германия, где климатические условия намного мягче, а поэтому и силы морозного пучения не так опасны, как в Подмосковье, где глубина промерзания грунта может достигать 1,4 м.
Особенно явление морозного пучения опасно, когда вспучивание грунта происходит неравномерно. За несколько зимних сезонов фундамент поднимается и опускается несколько раз, в результате чего он перекашивается, что в свою очередь сказывается на стенах и перекрытиях. Перекосившиеся стены, деформированные перекрытия теряют свою прочность и здание становится аварийным. Особенно разрушительны силы морозного пучения для бутобетонных, монолитных ленточных фундаментов, где нет армирующего каркаса. Наиболее опасны эти явления, когда уровень грунтовых вод расположен выше точки промерзания грунта. Обилие влаги многократно увеличивает морозное пучение, разрушительная сила которого огромна.
Конечно, для тяжелых кирпичных строений силы морозного пучения не так опасны, как для легких — деревянных или каркаснощитовых зданий. Когда сила тяжести строительных конструкций дома превышает силы, приложенные к фундаменту морозным пучением грунта, фундамент не поднимается. Опасность наступает тогда, когда вес строительных конструкций здания недостаточен, чтобы скомпенсировать силы, приложенные морозным пучением.
Неравномерность вспучивания грунта может происходить не только из-за неравномерной его влажности. Дело в том, что под домом грунт практически не промерзает, а поэтому на внутренние фундаменты силы морозного пучения не действуют (при условии, что дом зимой прогревается). Наружные же фундаменты воспринимают силы морозного пучения, и, если они поднимаются, конструктивные элементы здания деформируются со всеми отсюда вытекающими последствиями.
Но и наружные фундаменты принимают на себя неравномерные нагрузки. С южной стороны дома снег весной тает быстрее, насыщая грунт влагой. Грунт с южной стороны днем оттаивает, а ночью — промерзает. Фундаменты с этой стороны дома принимают на себя чередующиеся силы вспучивания, а с северной стороны, где днем оттаивание грунта происходит не так сильно, фундаменты находятся под действием более постоянных сил, Результатом этой неравномерности являются деформации, трещины и разрушения.
Особенно такая неравномерность сказывается на столбчатых фундаментах, когда наружные фундаменты при вспучивании поднимаются на высоту до 10 см, а внутренние — остаются на месте.В результате такого перекоса не только деформируется здание, но и появляется угроза пожара, так как печь (которая стоит на независимом фундаменте) остается на месте, а ограждающие конструкции дома сдвигаются со своего места. Нарушаются противопожарные разрывы между дымоходами и деревянными элементами крыши и перекрытия, появляются трещины в дымоходах, через которые искры могут попасть на сгораемые конструкции.
Итак, влияние сил морозного пучения на долговечность, конструктивных элементов здания довольно большое и с ним приходится считаться.
Разделение грунтов на пучинистые и непучинистые является чисто условным. Обычно к пучинистым грунтам относят глины, песчаные пылеватые или крупномоноблочные, в которых глиняный наполнитель превышает 15 %. Но даже чистый песок, который считается непучинистым грунтом, при определенных условиях может вспучиваться под влиянием отрицательных температур. Это происходит тогда, когда песок заключен во влагонепроницаемую оболочку (например, глиняный замок). В этом случае верхние слои грунта, замерзая, не могут вытеснить воду в нижерасположенные горизонты, поэтому они вынуждены подниматься вверх. И наоборот, песчаная подушка под основанием, расположенная ниже расчетной глубины промерзания, впитывает в себя выдавленную с верхних горизонтов влагу, равномерно распределяя ее по всей площади. В этом случае грунт не вспучивается и фундамент не испытывает пучинистых давлений.
Расчет сил морозного пучения представляет собой сложную инженерную задачу, при которой необходимы лабораторные замеры грунта.
К основным характеристикам пучения грунтов относят:

  • деформация грунта h — абсолютная величина, представляющая собой высоту поднятия грунта в определенной точке;
  • коэффициент пучения f, определяемый по формуле F = h / d где d — мощность слоя промерзания грунта.
Читайте также:  У фикуса сохнут листья. Почему это происходит и как спасти растение? Как спасти фикус Бенджамина сохнут и опадают листья, что делать. Что делать, если фикус Бенджамина сбросил все листья?

Классификация глинистых грунтов по степени пучения приведена в таблице:

Степень пучинистости грунта ;Значение коэффициента пучения fНепучинистый;f < 0,01 Слабопучинистый;0,01 < f < 0,035 Среднепучинистый;0.05 < f < 0,07 Сильнопучинистый;0,07 < f < 0, 012 Чрезмернопучинистый;f > 0,13Пучинистые свойства крупнообломочных грунтов и песков, содержащих пылеватоглинистые фракции, определяют через показатель дисперсии D, который имеет значение:
KD = K / (d2o * eo)
где К — коэффициент, равный 1,85×104 кв.см;
ео — коэффициент пористости талого грунта;
do — средний диаметр частиц грунта.

Предохранение грунта

Предохранение грунта от промерзания осуществляют покрытием его теплоизоляционными материалами, работами по удержанию снегового покрова, предварительным рыхлением грунта до промерзания и его засолением. Такая технология может иметь место при сооружении фундаментов мелкого заложения и повсеместно применяется в Скандинавских странах, где для защиты от мороза используют пенопропиленовую изоляцию (пенопласт). Предохранение грунта следует выполнять до начала устойчивых отрицательных температур. Теплоизоляционный слой размещают в самых важных местах — практически по всему периметру здания, благодаря чему становится, возможным заложение фундаментов глубиной 40 — 50 см даже в условиях очень сурового климата. Тепло, уходящее из дома в грунт через фундамент, плюс геотермальное тепло заставляют линию промерзания подниматься вверх по периметру фундамента. В результате снижаются тепловые потери, и глубина промерзания грунта под отапливаемым зданием резко снижается, а при хорошей тепловой изоляции промерзание вообще не происходит.
В качестве теплоизоляционных материалов можно использовать солому, опилки, листья деревьев, хвою, сухой торф или специальные синтетические покрытия. Толщина теплоизоляционного слоя зависит от прогнозируемых температур, свойств материала и определяется расчетным путем для каждого конкретного случая.
Предварительное рыхление выполняют рыхлителями или плугами на глубину не менее 35 см. Рыхлый грунт боронуют на глубину до 15 см. Лучшее утепление обеспечивается при перекрестном (двойном рыхлении), которое выполняют с перекрытием предыдущей разрыхленной полосы на 20 см. Теплоизоляционные свойства рыхлого грунта значительно возрастают при укрытии его снежным покровом.

Как определить тип грунта

Все грунты делятся на две основные группы:

  • Скальная почва — грунты, обладающие жесткой структурой, они слабо подвержены размытию грунтовыми водами, не промерзают и не склонны к пучениям. Несущие характеристики таких грунтов максимальны, но в Московской области они практически не встречаются;
  • Нескальная почва — грунты без жестких структурных связей, сюда относится большая часть знакомых всем осадочных пород — глинистый, песчаный, суглинистый грунт, супесь.

Пробные заборы грунта из разных шурфов (пробных скважин)
Рис. 1.3: Пробные заборы грунта из разных шурфов (пробных скважин)

В свою очередь нескальная почва делится на следующие типы грунтов:

  • Крупнообломочный грунт — в такой почве содержится большое количество крупных вкраплений горных пород — щебня, гравия либо гальки. Это один из лучших вариантов для строительства фундаментов, однако погружения свай в такие грунты сопровождается дополнительными сложностями;
  • Песчаники — содержат фракции песка размером от 0.1 до 2 миллиметров, пластичность практически отсутствует. Несущая способность песчаных грунтов непосредственно зависит от размера песчинок, чем они больше, тем лучше почва подходит для строительства фундаментов;
  • Глинистые — основной вид связного грунта. Главный недостаток глинистой почвы — склонность к впитыванию влаги: при высоком уровне грунтовых вод поры между частицами глины наполняются влагой, грунт при замерзании изменяется в объеме и оказывает на фундамент сильные выталкивающие воздействия;
  • Плывуны — вязкая почва, состоящая из мелких частиц песка и глины. Данный грунт не используется в качестве основания под фундаменты, поскольку ему свойственны сильные горизонтальные сдвиги и отсутствие постоянной структуры;
  • Пылевато-глинистые — почва, на которой достаточной несущей способностью обладают только свайные фундаменты глубокого заложения, опирающиеся на нижерасположенные пласты почвы, поскольку верхние слои грунта дают сильную усадку.

Совет эксперта! Определение типа грунта на строительном участке должно выполняться в результате геодезических исследований, в процессе которых берется забор проб почвы, характеристики которой анализируются в строительной лаборатории с помощью специального оборудования.

Схема распространения разных видов грунтов на территории России
Рис. 1.4: Схема распространения разных видов грунтов на территории России

При отсутствии возможности провести геодезию грунтов можно попытаться сделать это самостоятельно, однако за расчеты фундамента на основе данных о грунте, полученных кустарным способом, не возьмется ни одна серьезная проектировочная организация.

Для этого вам потребуется на строительном участке с помощью обычного садового бура сделать скважину глубиной в два метра. По внешнему виду породы, извлекаемой на поверхность в процессе бурения, определите тип грунта:

  • Глинистый — влажная глина пластична, из нее можно слепить шарик, который при сжатии формирует комок не покрывающийся трещинами; сухая глина твердая, ее куски достаточно сложно разбить даже лопатой. Цвет — от желтоватого до коричневого;
  • Суглинистая почва — низкопластичный грунт даже в влажном состоянии, при сдавливании из шарика получается лепешка с трещинами по краям. В составе содержит до 30% глины;
  • Супеси — непластичный грунт, в сухом состоянии крошится и рассыпается, включает до 10% глины;
  • Песчаная почва: пылеватая — визуально схожа с мукой либо пылью; мелкий песок — отдельные песчинки практически не различаются визуально; средний песок — размер фракций аналогичен зернам проса (до 2.5 мм); крупный — размер песчинок аналогичен размерам гречневой крупы (до 5 мм);
  • Гравелистый грунт — содержит каменные вкрапления размером с небольшой грецкий орех;
  • Щебенистая почва — свыше 50% массы такой почвы представлено щебенкой размером аналогичной большому ореху.

Важно! Информация о глубине промерзании почвы в Вашем регионе и о том, как её определить: Глубина промерзания почвы

Расчет полов

Пол на лагах устанавливается в большинстве домов, но при неправильном конструировании подвального помещения (отсутствие продухов, их малый или большой размер) в нем начинает конденсироваться влага.

Вода деформирует или полностью разрушает деревянные лаги и конструкцию пола, способствует разрушению бетона.

Самый простой способ бороться с влагой в подвале — отказаться от цокольного помещения. Пол по грунту обеспечит долговечность конструкции и не даст лишней влаге проникнуть в дом.